The Most Vibrant and Brightest Display – Samsung Galaxy Note 10

The Most Vibrant and Brightest Display – Samsung Galaxy Note 10
Even though the Galaxy Note 10 is only meant to be a minuscule update to the Galaxy S10, I’m a little disappointed in the direction (or lack thereof) that Samsung seems to be heading. The resolution downgrade to 1080p on the “base” Note 10, for example, is uncalled for. There are many people, including me, that can absolutely resolve the Note 10’s 401 pixels-per-inch. OnePlus had constantly been under fire for maintaining the same 401 pixels-per-inch in their displays, and Samsung should not be held sanctuary. That pixel density hovers within most people’s visual acuity at typical smartphone-viewing distances, and it needs to clear it a good-leap further to comfortably appear perfectly sharp for more people.
Color accuracy and its intricacies are a very niche matter. Most people don’t necessarily care for perfect color reproduction, which is why I tend to weigh it lower in my overall grade. But those that genuinely do care for color accuracy need to know the full extent of its calibration qualities. This is where the Note 10 — and Samsung’s calibrations in general — doesn’t perform as great as most outlets lead them on to be. DisplayMate is generally to be acknowledged for that since Samsung seems to time-after-time ace DisplayMate’s color accuracy tests. Most don’t question it, because it does require a lot of knowledge of the subject to understand what you’re looking at when you’re reading color accuracy measurements. One of the issues is that DisplayMate only measures 41 colors on the display at its maximum brightness. This is not enough measurements at enough display conditions to form a metric that accurately describes the general accuracy of a display. Because, as shown in my measurements, the color accuracy of the Samsung Galaxy Note 10 rapidly deteriorates at lower color intensities. Many intricate details about the panel calibration are left out, including black clipping, drive variance, and properly-averaged gamma (since gamma also changes with total emission). All of these are very important characteristics of a reference monitor, and a display review should bring light to these issues.
But for those that don’t care about color accuracy, it’s just another brighter panel, with no other improvements, and a reduction in pixels. However, other panels are getting just as bright, and many displays are also already rather accurate, with quite a number of them being more accurate than the Galaxy Note 10. Then there are those that are now including higher refresh rate panels, which provide an actually-noticeable umph to the smartphone display experience — an umph that hasn’t been felt (or seen) in newer display feature additions in a while. And these factors, in my modest judgment, now blur the line that props up the Galaxy lineup as a leader in smartphone displays. Which is fine, because it is a result of the latest smartphone displays just becoming that good, and they need this additional scrutiny to be able to differentiate them.
Samsung and Apple are the two back-to-back contenders for “best smartphone display”, and the title is sometimes thought to belong to the company who’s released the latest phone. However, since both companies source their displays from Samsung Display, many believe that it is Samsung’s smartphones that must have the better displays. This belief is flawed since Samsung Display is actually a separate company from Samsung Mobile, who assembles the Galaxy smartphones, and who are also asking client to Samsung Display. And just like any other client, the OEM is ultimately responsible for the color calibration qualities shipped on their phones’ displays, and the latest panels don’t necessarily mean the best-calibrated. In this review, we take an extensive look at panel qualities of the Samsung Galaxy Note 10 and how well it has been calibrated according to industry standards.
The Note lineup has previously been thought of as giant phones with extra-large displays, but Samsung switched it up with the Galaxy Note 10 to be more in-line in size with their S-series phones. The regular Galaxy Note 10 is very similar in size to the Galaxy S10, only slightly larger — the display is about 0.2 inches wider and 0.1 inches taller. The front-facing camera is housed in a small cut-out circle at the top-center of the display, which was previously at the top-right on the S10. I personally think that it looks goofier in the middle than on the right, but it is actually more out-of-the-way when using the phone since nothing is usually in the middle of the status bar anyway, and it doesn’t shove the system icons awkwardly to the left.
The panel is coined “Dynamic AMOLED” by Samsung, which they mainly attribute to its HDR10+ capability and its reduction in harmful blue light. This is the most Apple move Samsung has made in a while, in my opinion. The display has a native resolution of 2280×1080 pixels over its 6.3-inch display, or 401 pixels-per-inch. This pixel density is absolutely mediocre for a $950 phone, especially when Samsung’s “mid-range” S10e has a higher pixel density, and its S10 counterpart has a 1440p screen. The lower density is immediately noticeable to me when reading text, and 1080p videos definitely do not look as sharp as 1440p videos do on the S10. Samsung has been indecisive between rendering at 1080p or 1440p, as suggested by their 1080p render resolution on their 1440p panels. It would seem that Samsung would benefit from taking Apple’s approach of targetting a specific pixel density in-between, and custom-manufacture panels with resolutions for that pixel density for both sizes of their smartphones. Apple targets 458 pixels-per-inch for their OLED iPhones, which is between 1080p and 1440p for their respective sizes, and, in my opinion, is the sweet-spot between pixel density and power consumption without the need to downsample. However, I imagine that manufacturing panels at these specific resolutions is actually more costly than just using the mass-produced 1440p fabrication process.
Samsung boasts that their displays, starting from the S10, help against eye fatigue by reducing the amount of blue light within the “harmful range.” They achieve this by shifting the wavelength of their blue OLED a little further up the visible spectrum, and it is not a screen “filter” that some may have been lead to believe. Because adjusting the wavelength of a light source changes the color of its light, Samsung needed to have completely recalibrated their panels for the new OLED. At a glance, Samsung seems to have done a good job of color-matching it to their previous OLEDs as indicated by their similar (warm) white point, but I can’t help but wonder if it’s a reason for why they’re still calibrated so warm.
The Natural profile was the default display profile set on my US Snapdragon variant, and if Samsung is to follow the same trend as on the S10, it is the default profile for the US and Europe, while Vivid is the default for Asia. It is the color-accurate display profile, employing color management to render content in their intended color space, and defaults to targeting sRGB, the standard color space for the entire Internet, for non-contexted colors. The adoption of color management in Android apps is still very low, but Samsung’s Gallery app and Google Photos both support viewing wide-color images. As seen in the Color Gamut figure, the profile doesn’t seem to reach the full saturation for blue, and it is slightly warmer than standard.
As is Samsung tradition, the white point is calibrated too warm, with a correlated color temperature of about 6215 K for 100% white. Considering that OLED displays are subject to metameric failure and appear warmer for the same color measurements than their transmissive LCD counterparts, measuring too warm puts the Galaxy displays even further from the industry-standard white point. An inaccurate, warm white point is a detriment to the whole color gamut of the Note 10, shifting all colors towards red and decreasing color accuracy. Some may suggest that this is due to Samsung’s adaptive white point that was part of their old Adaptive display profile, but that does not apply to the Natural profile (nor does it seem to exist in the Vivid profile), and the Note 10 was measured in a near-pitch-black room.